Long-time behavior of stochastic reaction–diffusion equation with multiplicative noise
نویسندگان
چکیده
منابع مشابه
Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملStochastic Heat Equation with Multiplicative Fractional-Colored Noise
We consider the stochastic heat equation with multiplicative noise ut = 1 2 ∆u + uẆ in R+ × R , whose solution is interpreted in the mild sense. The noise Ẇ is fractional in time (with Hurst index H ≥ 1/2), and colored in space (with spatial covariance kernel f). When H > 1/2, the equation generalizes the Itô-sense equation for H = 1/2. We prove that if f is the Riesz kernel of order α, or the ...
متن کاملAsymptotic Behavior of Stochastic Strongly Damped Wave Equation with Multiplicative Noise
In this paper we study the asymptotic dynamics of the stochastic strongly damped wave equation with multiplicative noise under homogeneous Dirichlet boundary condition. We investigate the existence of a compact random attractor for the random dynamical system associated with the equation.
متن کاملFrequency Theorem for discrete time stochastic system with multiplicative noise
In this paper we consider the problem of minimizing a quadratic functional for a discretetime linear stochastic system with multiplicative noise, on a standard probability space, in infinite time horizon. We show that the necessary and sufficient conditions for the existence of the optimal control can be formulated as matrix inequalities in frequency domain. Furthermore, we show that if the opt...
متن کاملNonlinear stochastic equations with multiplicative Lévy noise.
The Langevin equation with a multiplicative Lévy white noise is solved. The noise amplitude and the drift coefficient have a power-law form. A validity of ordinary rules of the calculus for the Stratonovich interpretation is discussed. The solution has the algebraic asymptotic form and the variance may assume a finite value for the case of the Stratonovich interpretation. The problem of escapin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2020
ISSN: 1687-1847
DOI: 10.1186/s13662-020-02728-4